New Battery and Energy Storage Technology

Learn more about the latest in new battery technology and discover the next generation in battery and energy storage with expert analysis by Power Systems Research analysts.

Korea’s SK Battery To Supply Hyundai’s U.S. Plant

FAR EAST: SOUTH KOREA REPORT
Akihiro Komuro
Akihiro Komuro

Korean battery giant SK Innovation announced that it will expand its supply of batteries to Hyundai Motor Group in North America, and the two companies will discuss the construction of a joint venture plant to increase supply after 2025. SK Innovation says it plans to support Hyundai Motor Group’s increased EV production in North America.

In addition to EV production at its existing Alabama plant, Hyundai Motor plans to start operations of a dedicated EV plant in Georgia by 2025. Kia Motors, a group company, will also increase EV production in Georgia, as stable procurement of batteries, a key component of EVs, has become an issue.

SK On, a battery subsidiary of SK Innovation, already supplies batteries for Hyundai Motor’s mainstay Ioniq EV series. In the U.S., SK On produces batteries at its existing Georgia plant, and after consulting with Hyundai Motor, the company will decide whether to expand the plant or establish a new joint venture plant.

Read More»

BorgWarner To Produce Vehicle Batteries in Brazil

BorgWarner said it will start producing battery systems for electric vehicles in Piracicaba-SP, Brazil, by Q1 2023 with declared annual capacity of 1,000 electric units.

The plant in Piracicaba formerly belonged to Delphi and was acquired by BorgWarner in 2020. The plant will receive a production line from Akasol, another company acquired by BorgWarner.

Read More»

Redwood To Supply Cathode Materials To Panasonic

Guy Youngs
Guy Youngs

Panasonic Energy said it has agreed to purchase cathode active materials and copper foil for lithium-ion batteries from Redwood Materials.  The recycled cathode active materials will be used to manufacture batteries in the company’s new $4 billion factory located in De Soto, Kansas, starting in 2025, and the recycled copper foil will be used to make batteries at Panasonic’s facility in Sparks, Nevada, starting in 2024.

Recycling and a localizing supply chain are both essential to make the best use of limited natural resources,” said Kazuo Tadanobu, President and CEO of Panasonic Energy, in a press release.

This may amount to 50% of the cost of the battery and add around 900 new workers to Redwood Materials workforce once in full scale production

Read More»

Tesla Refinery Project Advances in Texas

Tesla is currently working on a lithium refinery project that would be coming to Corpus Christi, Texas, and it sounds like the automaker is in the final stretch of its negotiations with the authorities.

In September, we learned that Tesla has a plan to build a lithium refining facility on the Gulf Coast of Texas. At the time, all we knew was that Tesla was planning on moving fast with hope to start building in Q4 2022.

Read More»

Are There Enough Materials To Produce Needed EVs?

The transition from ICE to electric vehicles (EVs) is necessary to decrease climate-changing emissions. As deployment increases, so will the demand for EV battery materials such as lithium, cobalt, and nickel. These materials are primarily supplied through two sources: 1) newly mined or 2) recovered by recycling batteries.

Research shows there are enough explored or prospective reserves to electrify the global transportation sector using current technology if a high amount of battery recycling occurs. In this scenario, global demand for EVs in 2100 will amount to about 55% of cobalt reserves and 50% of lithium reserves. If recycling doesn’t ramp up, a shortage of lithium, nickel, or cobalt is likely, and it is estimated that demand would exceed what is economically accessible to extract.

Read More»

50-Ton Battery-Powered Electric Crane Introduced

The 653 E Electro Battery from Sennebogen is a new 50-ton battery-powered electric crane that was developed with Dutch dealer Van den Heuvel. “The new crane combines the benefits of battery technology with the proven advantages of the telescopic crawler crane design,” the company writes. “This means you work completely emission-free and retain maximum flexibility, thanks to the Dual Power Management system.”

With a 210 kWh battery, the crane is expected to be able to operate for up to 14 hours.

Read More»

World Needs To Mine 25X More Lithium

Guy Youngs
Guy Youngs

The de-carbonization of the transport industry is heavily dependent on the scaling up of electric vehicle production rapidly and massively, and this rests on scaling up battery mineral mining and refining. This means Lithium.

Benchmark Mineral Intelligence counts 40 lithium mines that have been in operation and producing lithium in 2022. But, by 2050, the company sees a need for 234 more lithium mines if there’s no battery recycling underway (which, of course, is completely unrealistic but is a place to start from for such an analysis).

“The long term path for lithium is set, yet the supply chain scaling challenge has just begun,” said Simon Moores, chief executive of Benchmark. “What this data shows is that we are at just the beginning of a generational challenge, not one that’s going to be solved in the 2020s.”

Read More»

US Increases EV Battery Recycling Capacity

A new EV battery recycling plant in Alabama from Li-Cycle has just come online. It can process up to 10,000 tons of battery waste per year, enough for about 20,000 EVs per year, and helps the US move toward a zero-emission economy.

Li-Cycle’s processing method is specifically designed as a two-part system recycling battery manufacturing scrap and turns end-of-life batteries into a black mass. The black mass is then processed and used to generate battery minerals such as nickel sulfate, lithium carbonate, and cobalt sulfate, three of the most critical factors for EV batteries. According to the battery recycling company, Li-Cycle believes its new method will enable up to a 95% efficiency rate compared to the industry average of 50%.

Read More»

Penn State Offers Smaller, Faster Charging Batteries

Researchers at Penn State say they have found a way to make batteries for electric cars that can be smaller and faster charging.

“The need for smaller, faster-charging batteries is greater than ever,” said Chao-Yang Wang, the lead author of the research study that was published in the October 12 issue of the journal Nature. “Our fast-charging technology works for most energy dense batteries and will open a new possibility to downsize electric vehicle batteries from 150 to 50 kWh without causing drivers to feel range anxiety,” said Wang.

Batteries operate most efficiently when they are hot, but not too hot. Keeping batteries consistently at just the right temperature has been a major challenge for battery engineers. Historically, they have relied on external, bulky heating and cooling systems to regulate battery temperature, but they respond slowly and waste a lot of energy. The team decided to regulate the temperature from inside the battery. The researchers developed a new battery structure that adds an ultrathin nickel foil as the fourth component besides the anode, electrolyte, and cathode. The nickel foil self-regulates the battery’s temperature and reactivity which allows for 10 minute fast charging on just about any EV battery.

Read More»